

member of The ditter Group™

Iowa Heartland Chapter

HFC Plant Power Supplies

Lowell Anderson Sr. Sales Engineer Alpha Technologies

landerson@alpha.com

(609) 625 7288

www.alpha.com

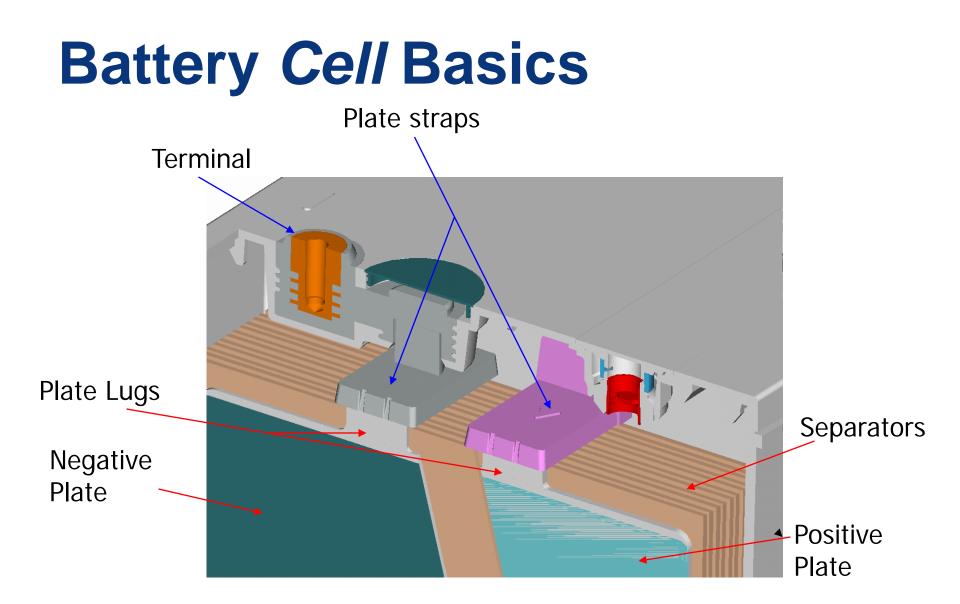
Power Supplies

Batteries

Battery Cell Basics

Battery Voltage is the result of a chemical reaction between Lead and Sulfuric Acid

Typical Lead-Acid Cell produces 2 VDC



Battery Cell Basics

Each 2 volt Cell

- Positive Charged
 Plate
- Negative Charged
 Plate
- Non-Conductive Separator
- Acid Gel or Absorbed

	a 8	
AAA		In n'A DO

A Battery is a collection of Cells

• 12 volt Battery = Six 2 volt cells in one Jar

A Battery String is a collection of Batteries wired in Series

• 36 volt Battery = Three 12 volt Battery Jars

• 36 volt Battery = Eighteen 2 volt Cells

Effect of Temperature on Run Time

Rules of thumb

- Batteries are rated at 77°F
- 4 hours (100%)

- Traditional HFC @32°F
- Traditional HFC @ 0°F

Effect of Temperature on Run Time

Rules of thumb

- Batteries are rated at 77°F
- Traditional HFC @32°F
- Traditional HFC @ 0°F

4 hours (100%) 3 hours (75%)

Effect of Temperature on Run Time

Rules of thumb

- Batteries are rated at 77°F
- Traditional HFC @32°F
- Traditional HFC @ 0°F

- 4 hours (100%)
- 3 hours (75%)
- 2 hours (50%)

Effect of Temperature on Run Time

Rules of thumb

- Batteries are rated at 77°F **4 hours (100%)**
- Traditional HFC @32°F
- Traditional HFC @ 0°F
- Pure Lead @32°F
- Pure Lead @ 0°F

- 3 hours (75%)
- 2 hours (50%)

Effect of Temperature on Run Time

Rules of thumb

- Batteries are rated at 77°F **4 hours (100%)**
- Traditional HFC @32°F
- Traditional HFC @ 0°F
- Pure Lead @32°F
- Pure Lead @ 0°F

3 hours (75%)

- 2 hours (50%)
 - 3 Hr 24 min (85%)

Effect of Temperature on Run Time

Rules of thumb

- Batteries are rated at 77°F **4 hours (100%)**
- Traditional HFC @32°F
- Traditional HFC @ 0°F
- Pure Lead @32°F
- Pure Lead @ 0°F

3 hours (75%)

2 hours (50%)

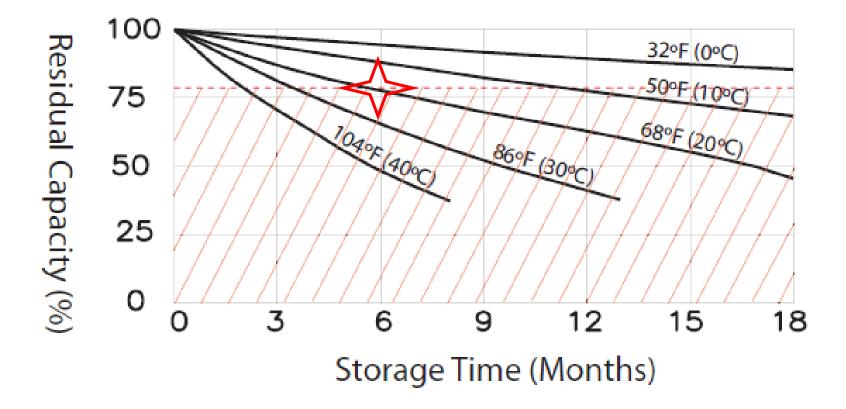
- 3 Hr 24 min (85%)
- 2 Hr 48 min (70%)

Pick the Right Battery

Match the Battery Technology to the Job

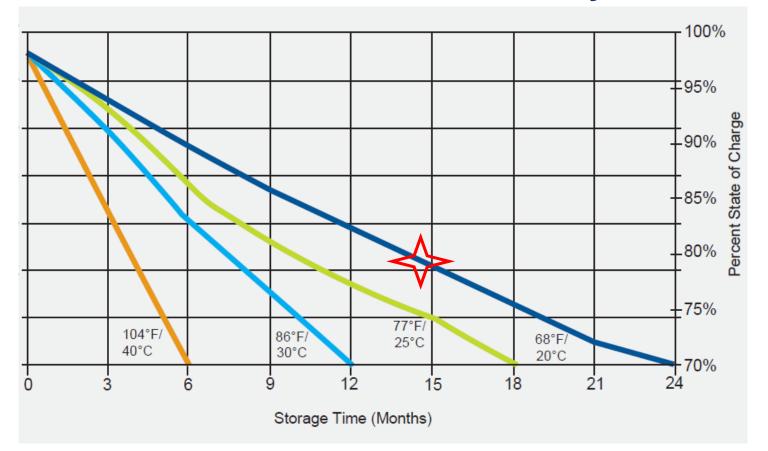
- Environment outside / unregulated
- Charge method under constant charge
- Load profile constant WATTAGE
- Run time multiple hours
- Discharge frequency and depth utility failures

Pick the Right Battery


- Float Service
- Wide Temperature Range
 - Remember effect of cold temperatures on capacity
- Constant Wattage Discharge
 - Do not use amp-hours
- Need 100% out-of-box performance
 - IEEE allows 80% shipment

• Run time to include mean-time-to-repair MTTR

Storage and Handling


- Cold is Good / Hot is Bad
 - Think Broccoli

Standard Lead Calcium HFC Battery

Self-Discharge Rate vs. Temperature

Pure Lead HFC Battery

Storage and Handling

- Cold is Good / Hot is Bad
- Protected Storage

Storage and Handling

- Cold is Good / Hot is Bad
- Protected Storage
- Rotate Stock Use Oldest First

DATE CODE

0304 Month Year 03 04 **March 2004**

Storage and Handling

- Cold is Good / Hot is Bad
- Protected Storage
- Rotate Stock Use Oldest First
- Re-Charge to Protect Shelf Life

You WILL Recycle

Battery Installation

- Start with a Good Battery
 - Visual Inspection
 - Check for 12.5VDC Minimum Battery
 Voltage

What is JOB # 1?

What is JOB # 1?

You go home at the end of the day with all your body parts intact !!

Work SMART

Don't give your co-workers the opportunity to say *"well, that was stupid"*

- Put brain in gear
- Safety Glasses
- Personal Protective Equipment PPE

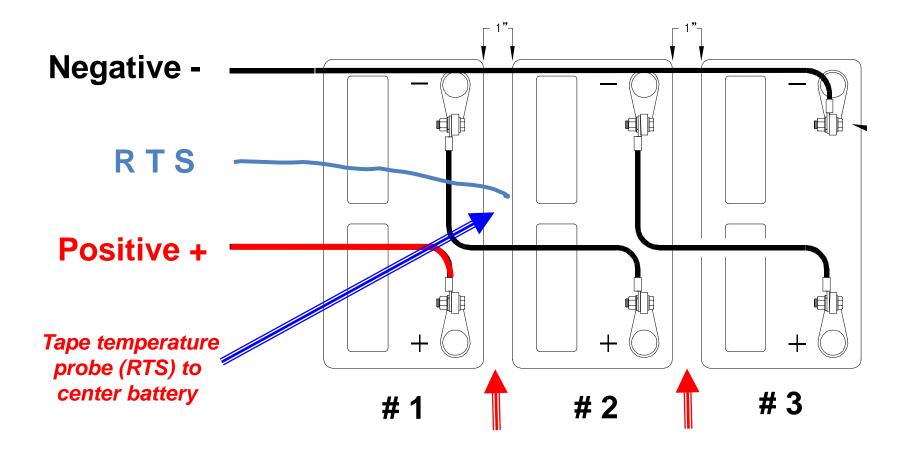
Avoid Shorts

- Watches / Rings / Belt Buckles
- Insulate tools

Battery Installation

- Start with a Good Battery
- Transport Safely
 - In the box !

Battery Installation


- Start with a Good Battery
- Transport Safely
- All Batteries in String (shelf):
 - Within 12 Months from Oldest to Newest
 - All Same Manufacture and Model

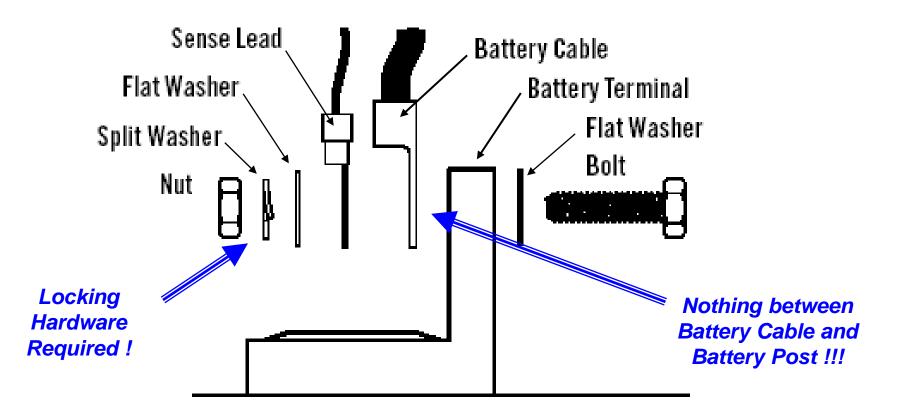
Making Batteries Last Longer

Battery Installation

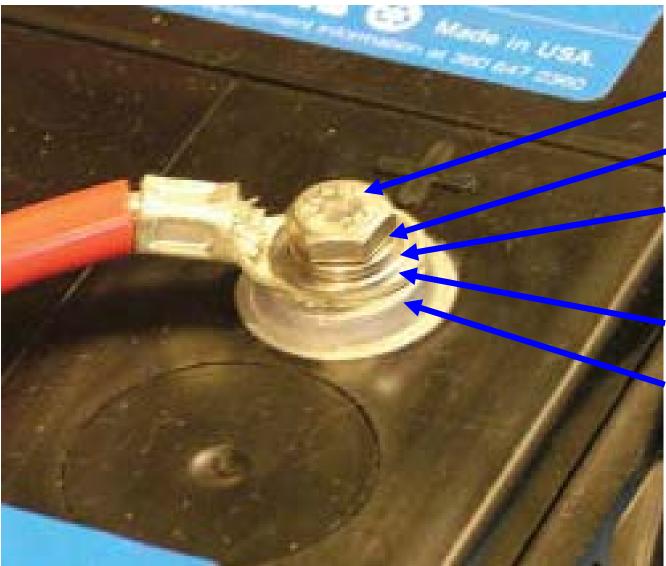
- Start with a Good Battery
- Transport Safely
- All Batteries in String Same Mfg / Size and within 12 mo.
- Shelf Layout Matters

Typical 3 Battery Layout

Battery Temperature Probe



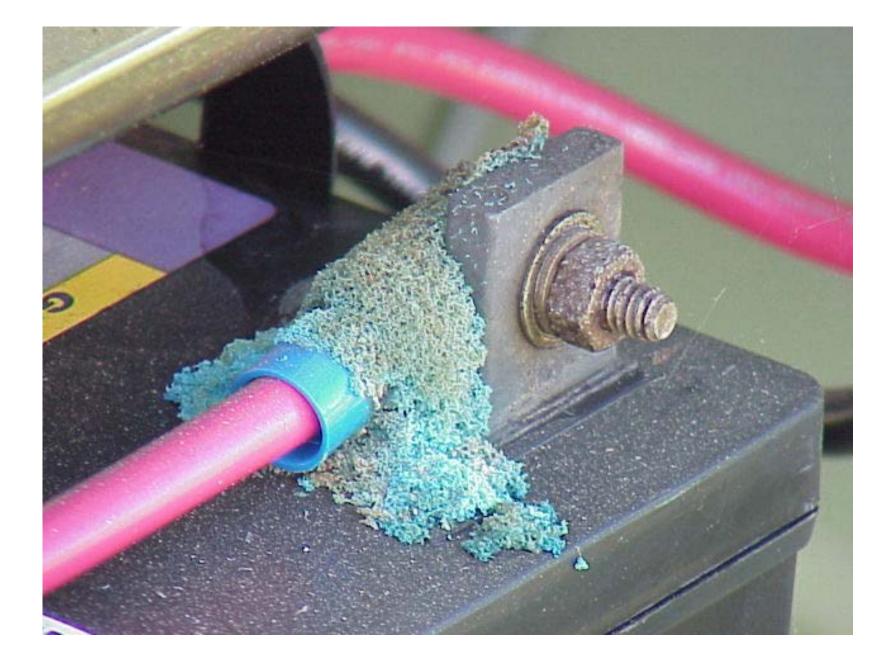
Making Batteries Last Longer


Battery Installation

- Start with a Good Battery
- Transport Safely
- All Batteries in String Same Mfg / Size and within 12 mo.
- Shelf Layout Matters
- Correct Terminal Hardware Stack-Up

Chair Style Terminal Hardware

Copper Insert Style Terminal Hardware



- Bolt
- Lock
- Flat
- (sense wire)
- Battery cable
- Battery terminal

Making Batteries Last Longer

Battery Installation

- Start with a Good Battery
- Transport Safely
- All Batteries in String Same Mfg / Size and within 12 mo.
- Shelf Layout Matters
- Correct Terminal Hardware Stack-Up
- Terminal Corrosion Protection

Oh God, do I really HAVE to?

<u>WHY ?</u>

Avoiding Unplanned Outages

- Think upset customers
- Think working in bad weather
- Think always easier when problem is still small

<u>WHEN ?</u>

Base on System Health and Metrics

- Phone and Business Data Customers?
- Age of Batteries?
- Lack of Previous Successful Maintenance History?
- Status Monitored?
- Performance History?

<u>HOW ?</u>

Visual Inspection

- Corroded Terminals?
- Cracked or Swollen Jars?
- Date Codes

- Visual Inspection
- Verify Battery String Fully Charged
 - Power supply in Float Mode

- Visual Inspection
- Verify Battery String Fully Charged
- Check Open Circuit Battery Voltage
 - Replace any less than 12.5VDC

- Visual Inspection
- Verify Battery String Fully Charged
- Check Open Circuit Battery Voltage
- Conductance Test
 - Replace when less than 50% of brand new

- Visual Inspection
- Verify Battery String Fully Charged
- Check Open Circuit Battery Voltage
- Conductance Test
- Load Test
 - Max range 0.3VDC under load

<u>HOW ?</u>

- Visual Inspection
- Verify Battery String Fully Charged
- Check Open Circuit Battery Voltage
- Conductance Test
- Load Test

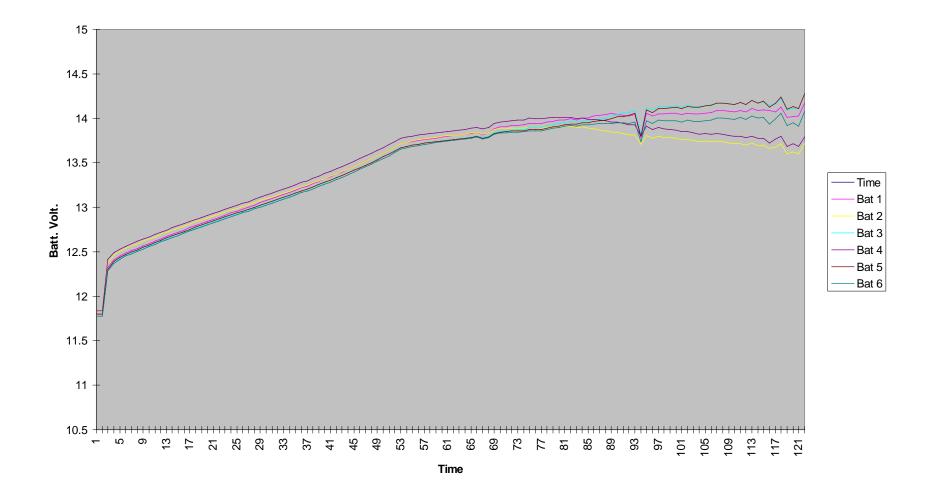
Document Document Document

Battery Basics

A Nasty Little Secret about Battery Strings

 Individual Cells do NOT all charge the same, even when they appear to be identical (model, age, etc)

Battery Basics

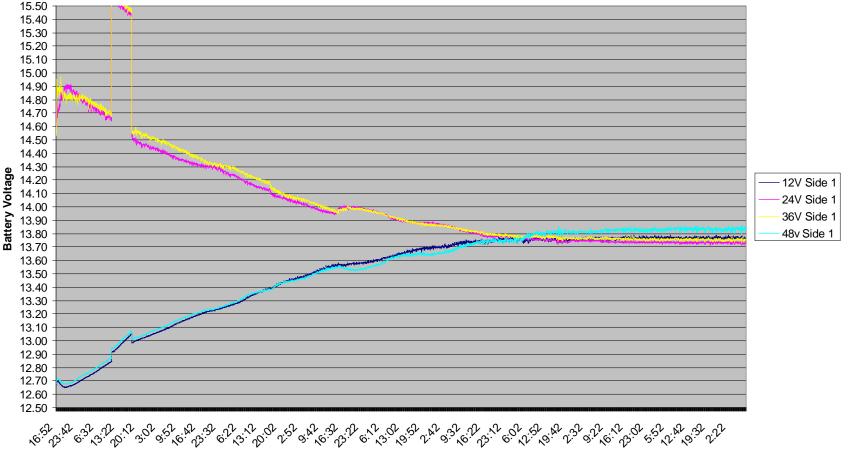

2.25 +2.25 + 2.25 + 2.25 +2.25 +2.25 _____ 13.50 VDC

Ideal or "on paper" Charging Voltages

Battery	Basics	
		undercharged
2.25	2.20	
+	+	
2.25	2.23	
+	+	
2.25	2.30	 overcharged
+	+	•
2.25	2.25	
+	+	
2.25	2.27	Real World
+	+	Real WOITU
2.25	2.25	
=======	=======	Charging Voltages
13.50 VDC	13.50 VDC	

Battery Charging

Six 165GXL batteries in two parallel strings


Battery Charging

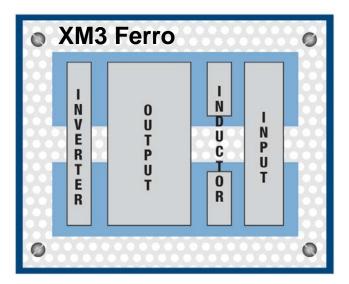
AlphaGuard Charge Management

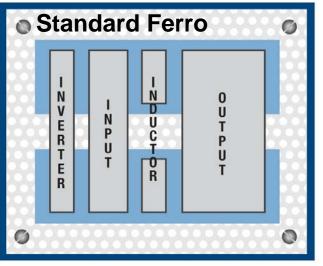
Battery Charging

2 old and 2 new batteries in single string

6/22/2001 through 7/2/2001

Battery Basics


What does Battery Charge Balancing do for ME?


- Extends life of battery
- Provides rated run times
- Eliminates false battery alarms in status monitoring

What's New In Power Supplies ??

The Next Generation is Here !

New E³ Ferro Design Topology

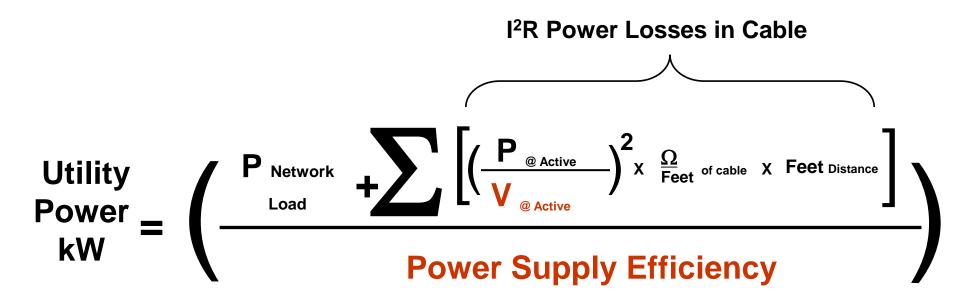
Inductor Protects Electronic Loads on Output 1000:1 Attenuation Inductor Protects Inverter Circuitry 1000:1 Attenuation

1. High Efficiency Line Mode Operation – Reduced Utility Costs

2. Tight High Output Voltage Regulation – Reduced I²R loses and More Reach

3. High Efficiency Inverter Mode Operation – More Battery Runtime

(Product Family 8,10,15,18 Amps. Load Matching → Reduced Utility Costs)

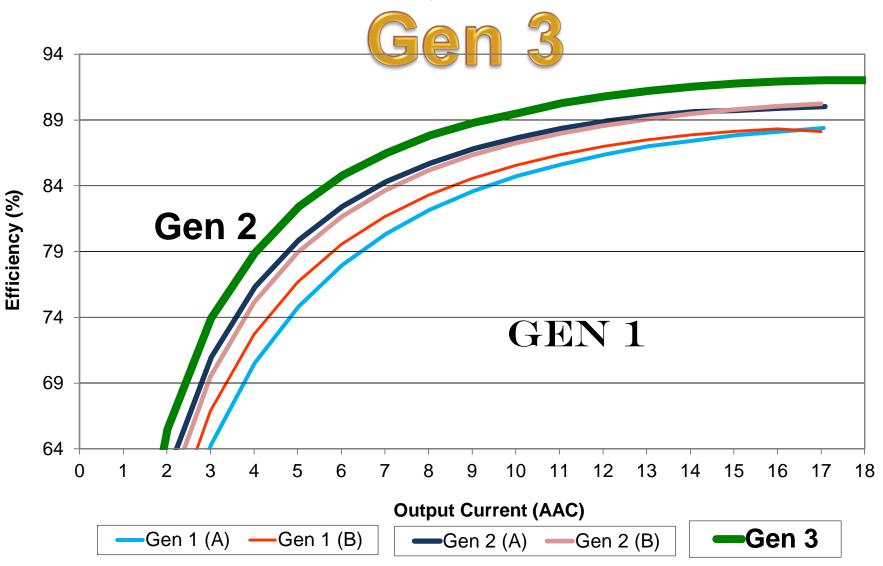

Standard Ferro Designs

Inductor Protects Electronic Loads on Output 1000:1 Attenuation

MOV protection for Inverter Circuitry

Alpha Factor (line mode & output voltage)

Your Formula for OpEx Reduction


Utility Savings Review

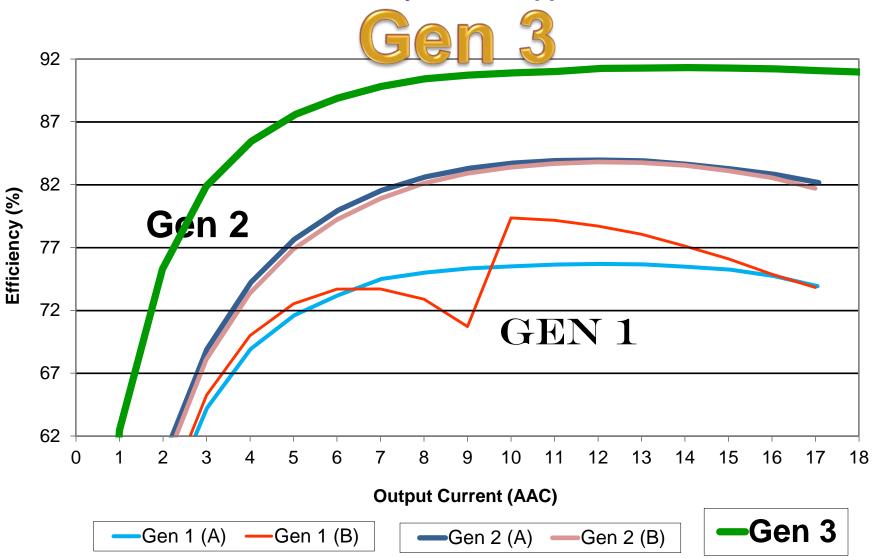
Output Amps	10
Output Voltage (Vac)	90

Gen 1 to XM3 Yearly Utility Savings					
kW	/h Rate	GEN1 Utility Cost	XM3 Utility Cost	Savings	
\$	0.070	\$651.25	\$578.18	\$73.07	
\$	0.100	\$930.35	\$825.97	\$104.39	
\$	0.125	\$1,162.94	\$1,032.46	\$130.48	
\$	0.150	\$1,395.53	\$1,238.95	\$156.58	
\$	0.200	\$1,860.71	\$1,651.94	\$208.77	
\$	0.250	\$2,325.88	\$2,064.92	\$260.96	
\$	0.350	\$3,256.24	\$2,890.89	\$365.35	
\$	0.400	\$3,721.41	\$3,303.87	\$417.54	

Gen 2 to XM3 Yearly Utility Savings					
kW	h Rate	GEN2 Utility Cost	XM3 Utility Cost	Savings	
\$	0.070	\$629.56	\$597.45	\$32.11	
\$	0.100	\$899.37	\$853.50	\$45.87	
\$	0.125	\$1,124.21	\$1,066.87	\$57.33	
\$	0.150	\$1,349.05	\$1,280.25	\$68.80	
\$	0.200	\$1,798.73	\$1,707.00	\$91.74	
\$	0.250	\$2,248.42	\$2,133.75	\$114.67	
\$	0.350	\$3,147.79	\$2,987.25	\$160.54	
\$	0.400	\$3,597.47	\$3,414.00	\$183.47	

Transformer Efficiency Power Supplies

Summary - CableOne Utility Savings


System #1 – \$ 845/Year and System #2 – \$ 372/Year

Cable Operator System #1 GEN1 to GEN3						
	<u>GEN1 Utility</u> Power	<u>GEN3 Utility</u> <u>Power</u>	<u>% Utility</u> Reduction			
Site 1	1.2 kW	1.03 kW	14.17%			
Site 2	.7 kW	.64 kW	8.57%			
Site 3	.88 kW	.78 kW	11.36%			
Site 4	.78 kW	.7 kW	10.26%			
Site 5	.65 kW	.58 kW	10.77%			
Site 6	.96 kW	.91 kW	5.21%			
Site 7	.89 kW	.82 kW	7.87%			
Site 8	.35 kW	.3 kW	14.29%			
Site 9	.94 kW	.81 kW	13.83%			
Site 10	.79 kW	.7 kW	11.39%			
Site 11	.78 kW	.66 kW	15.38%			
Site 12	.53 kW	.46 kW	13.21%			
Total	9.45 kW	8.39 kW	11.22%			

Cable Operator System #2 GEN2 to GEN3

	GEN2 Utility	<u>GEN3 Utility</u>	
	<u>Power</u>	<u>Power</u>	<u>% Utility Reduction</u>
Site 1	.29 kW	.25 kW	13.8%
Site 2	.35 kW	.32 kW	8.6%
Site 3	.47 kW	.44 kW	6.4%
Site 4	.48 kW	.45 kW	6.2%
Site 5	.5 kW	.47 kW	6.0%
Site 6	.59 kW	.55 kW	6.8%
Site 7	.84 kW	.8 kW	4.8%
Site 8	.61 kW	.57 kW	6.6%
Site 9	.74 kW	.71 kW	4.1%
Site 10	.52 kW	.5 kW	3.8%
Site 11	.77 kW	.72 kW	6.5%
Site 12	.77 kW	.74 kW	3.9%
Site 13	.82 kW	.78 kW	4.9%
Site 14	.56 kW	.54 kW	3.6%
Site 15	.84 kW	.81 kW	3.6%
Site 16	.92 kW	.88 kW	4.3%
Site 17	.81 kW	.78 kW	3.7%
Site 18	.89 kW	.83 kW	6.7%
Site 19	.96 kW	.94 kW	2.1%
Total	12.73 kW	12.08 kW	5.1%

Inverter Efficiency Power Supplies

Summary – CableOne Runtime Improvement

System #1 – 16.1 to 24.6%, System #2 – 9.7 to 22.1%

	Cable Operator System #1 GEN1 to GEN3					
	<u>Power</u> Draw	<u>GEN1</u> <u>Runtime</u>	<u>GEN3</u> <u>Runtime</u>	<u>Increased</u> <u>Runtime</u>	<u>Increased</u> <u>Runtime %</u>	<u>GEN 1 PS</u> <u>Age</u>
Site 1	12.5 Amp	118	146	28	23.7%	1997
Site 6	9.2 Amp	161	187	26	16.1%	1997
Site 8	2.6 Amp	561	699	138	24.6%	1997

	Cable O	perator	System	#2 GEN2	to GEN3	
	<u>Power</u>	GEN2	<u>GEN3</u>	Increased	Increased	<u>GEN 2 PS</u>
	<u>Draw</u>	<u>Runtime</u>	<u>Runtime</u>	<u>Runtime</u>	<u>Runtime %</u>	<u>Age</u>
Site 2	3 Amp	520	635	115	22.1%	2007
Site 7	8.1 Amp	196	215	19	9.7%	2009
Site 19	10.1 Amp	157	175	18	11.5%	2007

member of The விபிடை Group™

Questions ?

Copyright © 2010 The Alpha Group. All Rights Reserved.

member of The விப்பை Group™

Thank you for your time.

Copyright © 2010 The Alpha Group. All Rights Reserved.

